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Abstract Advances in computer technology, encompassed with fast emerging of
multicore processor technology, have made the many-core personal computers avail-
able and more affordable. The availability of network of workstations and cluster of
many-core SMPs have made them an attractive solution for high performance com-
puting by providing computational power equal or superior to supercomputers or
mainframes at an affordable cost using commodity components. In order to search
alternative ways to extract unused and idle computing power from these computing
resources targeting to improve overall performance, as well as to fully utilize the un-
derlying new hardware platforms, these are major topics in this field of research. In
this research paper, the design rationale and implementation of an effective toolkit
for performance measurement and analysis of parallel applications in cluster envi-
ronments is introduced; not only generating parallel applications’ timing graph rep-
resentation, but also to provide application execution’s performance data charts. The
goal in developing this toolkit is to permit application developers have a better un-
derstanding of the application’s behavior among selected computing nodes purposed
for that particular execution. Additionally, multiple execution results of a given ap-
plication under development can be combined and overlapped, permitting application
developers to perform “what-if” analysis, i.e., to deeper understand the utilization of
allocated computational resources. Experimentations using this toolkit have shown
its effectiveness on the development and performance tuning of parallel applications,
extending the use in teaching of message passing, and shared memory model parallel
programming courses.
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1 Introduction

In recent years, the merge of rapidly advancing computer and networking technolo-
gies has resulted in a new computing infrastructure named the cluster or network of
workstations, also known as the cluster of SMPs, multi-core PC-based clusters. The
potential of this computing infrastructure has attracted attention from the computing
industry, mainly due to their scalability, as also their ability to provide significant
cost effective computing, since they rely solely on commodity technology, and effi-
ciently support both single processor interactive processing and large batch parallel
processing.

Personal computers (or multi-core/many-core multiprocessors PC) are typically
interconnected through a high-speed network, such as Gigabit Ethernet, SCI, Myrinet
or Infiniband, and they run commodity operating systems, such as FreeBSD, SUSE,
Fedora or any other UNIX-like operating systems. A number of software tools have
been developed to support concurrent and distributed computing in network of work-
stations, including popular tools such Pthreads [25], OpenMP [24], Parallel Virtual
Machine (PVM) [11], and Message Passing Interface (MPI) [1, 12, 19]. MPI and
PVM are explicit message passing libraries where tasks communicate through mes-
sage exchange, while Pthreads explores the degree of concurrency through a mul-
tithreaded programming model, and OpenMP is used to explore concurrencies in a
shared memory programming model.

Cluster computing is an area of growing interest to support parallel and distrib-
uted applications, and a cost effective and convenient platform for high-performance
computing, widely used to improve the performance of many complex computational
problems and applications with intensive demands for computational power. Prob-
lems, such as the grand challenges, are fundamental in science and engineering with
broad scientific and economic impact, which solution can definitely be advanced with
high-performance computing [2]. Many of these applications are I/O intensive and
the limited bandwidth of the I/O subsystem of the cluster computing systems is an
important bottleneck usually ignored [4]. Therefore, the performance of parallel I/O
primitives is critical for the overall computing system performance.

Parallel applications can behave in a number of unexpected ways, due to their com-
plex structure, the parallel system on which they run, the number of computing nodes
used to execute the application in a cluster environment, the dataset used by the paral-
lel code, the regularity of applications, the complexity of algorithms, the variability in
programming environments, the heterogeneity of software and hardware platforms,
among others [13]. Additionally, effective partitioning, allocation and scheduling of
application programs on network of workstations are crucial to obtain good perfor-
mance; the performance is very sensitive to the strategy used to distribute data among
computing nodes or processors [17].

With.the continuous.increase.of workstation computing power and communica-
tion speed, cluster computing has become an inexpensive way to execute scientific
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applications. Though, in the same proportion, there is an increase need for perfor-
mance tools that support these platforms, since it is a difficult task to allocate the
entire work in an optimal manner. It is hard to know the exact optimal proportion of
hardware resources, even if the code to be executed is in its best way, and thus, the
optimization of the distributed application is still an open problem.

The ability of performance technology to keep pace with the growing complex-
ity of parallel and distributed systems depends on robust performance frameworks
that can at once provide system-specific performance capabilities and support high-
level performance problem solving. Flexibility and portability in empirical methods
and processes are influenced primarily by the strategies available for instrumentation
and measurement, and how effectively they are integrated and composed. For many
parallel applications, efficient use of a fast interconnection network is essential for
good performance. Finding the right trade-off between parallel application type and
construction and ideal number of computing nodes to execute the application is dif-
ficult in general. The way to tailor parallel application toward improving its overall
performance in a given cluster system is another issue to be investigated.

This paper presents a software toolkit for performance visualization and analy-
sis of MPI/OpenMP parallel applications, describing how it addresses diverse re-
quirements for performance observation and analysis, as also an integrated graphical
toolkit for creating, compiling, and executing parallel programs. During the devel-
opment of parallel applications, we investigate the effects of alternative data-transfer
methods using a number of shared memory and message passing constructions avail-
able, where we also evaluate the influence of heterogeneity in systems and network.

As any performance evaluation and analysis methodology, high-level abstraction
of application plays an important role. Based on the message passing MPI program-
ming paradigm, a class of timing graphs named DP*Graph has been proposed in [17].
The main objective in proposing such novel representation is to describe concisely
program parallelism for parallel programs with parallel constructions, i.e., simultane-
ous executions of tasks, as well as the communication and synchronization relation-
ships among these parallel computations. In particular, this representation is defined
only by the program and is independent of runtime input values or computational
results.

The remainder of this paper is structured as follows: Sect. 2 brings motivation
for the design and implementation of the proposed toolkit and background for this
research are discussed, while in Sect. 3, we briefly discuss the implementation of
this toolkit and its major features, and Sect. 4 presents experimental results using
this toolkit. Finally, conclusions and future works for this research are discussed in
Sect. 5.

2 Background and motivation

The design of the proposed toolkit involves cluster performance monitoring, paral-
lel timing graph representation,.and application performance evaluation approaches.
These approaches are discussed separately|in subsections that follow next.
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2.1 OpenMP, MPI and hybrid model MPI/OpenMP

MPI is a message passing standard defined by vendors and academic research centers
and designed for distributed memory systems, that is, involving explicit data par-
allelism and implicit parallelism. OpenMP [24] is an industrial standard for shared
memory parallel programming agreed on by a consortium of software and hardware
vendors. It consists of a collection of compiler directives, library routines, and en-
vironment variables that can be easily inserted into a sequential program to create a
portable program that will run in parallel on shared-memory architectures. It is easier
for a nonexpert programmer to develop a parallel application under OpenMP than in
the de facto message passing standard MPI [14]. OpenMP also permits the incremen-
tal development of parallel code. Thus, it is not surprising that OpenMP has quickly
become widely accepted for shared-memory parallel programming; though most cur-
rent compilers support it to run only within a node of shared-memory address space
machine.

Furthermore, in order to run the application on cluster of SMPs or cluster of many-
core PCs, a hybrid model of MPI/OpenMP is one of the required models. In a hybrid
model of MPI/OpenMP, a node is mapped to an MPI process, which realized by
MPI communication functions for internode communication and processors within
the node are mapped to OpenMP threads, which communication can be accessed
directly to the shared-memory address space by all the processors in a same node.
The potential benefits of the hybrid model MPI/OpenMP have been discussed and
found in [29].

2.2 Performance visualization

In the last few years, a number of powerful performance visualization tools have
emerged and are available for graphical visualization of parallel applications. They
are essentially “discrete event monitoring” tools, which are able to display time-line
information of individual parallel processes and show graphically active communica-
tion events during the execution. Research groups have concentrated efforts in the de-
velopment of tools to help application developers and users in finding and correcting
performance anomalies and inefficiencies in parallel programs under development.
Some of the major advantages to visualize parallel applications using such tools are
to perform qualitative latency/bandwidth model comparisons, and also the amount of
overlapping computations and communication.

Examples of such performance visualization tools include VAMPIR [31] and
DIMEMAS [8]. These tools display execution performance results in high resolution
images, based on data acquired during execution and stored in a specific database,
e.g., RRD [28], and later display through HTML pages. Multi Router Traffic Gra-
pher (MRTG) [21], based on scripting language Perl and C, is widely used to graph
all sorts of data for network attached devices. Basically, it generates HTML pages
containing PNG images that provide a real-time visual representation of the network
traffic. Perl scripts read the traffic counters in a stored file, while a fast C program
logs.the traffic_data file. Round Robin Database (RRD) is a system that stores and
displays time-series data (e.g., network bandwidth and average load) in a compact
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way; in parallel, the major feature is that it does not expand over time. Several well-
known tools, such as Ganglia Cluster Toolkit [10], CACTI [5], and NMS [23], are
implemented by independent teams around the world using the RRD tool.

As listed, tools such as Ganglia and CACTI can only show performance data over
time, as each computer node of a cluster system, and unfortunately, not possible to
show particular time periods, such as the start and the end of execution of parallel
applications in a cluster system. In addition, VAMPIR and DIMEMAS are avail-
able commercially only, with quite a high license fee, as also not flexible to display
performance data for evaluations and performing “what-if” analysis, according to
application developers’ needs.

2.3 Parallel graph representation

Writing parallel applications is quite a difficult task, particularly if the application
developer plans to efficiently describe his parallel algorithm. This act implies the un-
derstanding of message passing and cycle distribution techniques, as also association
of statements for best matching on particular situations’ needs. Moreover, the execu-
tion of a parallel application depends on several factors, in which tasks may interact
in complex ways. Basically, a distributed algorithm can be defined as a sequence of
local computations, interleaved with stores/loads, device I/O operations, and network
communication steps, that is, all types of operations are allowed to be executed con-
currently among themselves.

To identify and understand which would be the best structure to be used when
writing a parallel application, it is also important to understand what factors affect
the performance of this parallel application. Therefore, a representation model is re-
quired, where computation, network communication, and local I/O times are evalu-
ated in orthogonal way.

Sequential task graph-based representation, also known as the computation of
maximum task execution time, had been comprehensively discussed in [20, 26].
Karypis proposed multi-level graph partitioning in [15], Cain introduced call-graph
based search strategy in [6], and Kwok and El-Rewini discussed task graph schedul-
ing in [9, 16]. Unfortunately, no discussions have been done for the parallel version
of such timing graph representation.

New representation terminologies have been added to this sequential version of
representation, producing a novel version of timing graph capable of representing
both sequential and parallel programs. DP*Graph [17] is a novel representation de-
sign of timing graphs that can represent not only serial programs, but also parallel
programs instrumented with communication and synchronization operations, show-
ing execution flow of this parallel application in each computational node of cluster
system, where there is present local computations interleaved with communications.

2.3.1 Terminology
In parallel and distributed processing, synchronization and communication opera-
tions.among computing nodes.are fundamental operations. By using message pass-

ing concepts to build a parallel program, these message passing constructions can
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Fig. 1 Elements of DP*Graph .
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Fig. 2 Code listing and its representation

be performed explicitly using MPI functions such as send, receive, broadcast, re-
duce, scatter, and others, while parallel programs built using OpenMP constructions
merely involves parallel execution of tasks and synchronization. In Fig. 1, we show
DP*Graph graph elements used to represent parallel programs.

2.3.2 Program representation

The representation of sequential and parallel programs with MPI/OpenMP works out
as follows. A sample parallel code and its graph representation using the DP*Graph
is depicted in Fig. 2.

v n means that the computing node is receiving a message sent by computing

node n, while A n means that computing node sends a message to processing
node n.

Assuming that the OpenMP number of threads in this parallel code is set to
two, it performs the following: all nodes calculate a simple vector sum in a loop of
size 1,000, which works are shared among two threads, and then computing node 0
sends the data to computing node 1, while computing node 3 send data to comput-
ing node 2. We can observe that although nodes 1 and 2 perform calculations, they
actually were not used at any moment during the parallel program’s execution.
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3 Implementation

The merit of designing and development for this proposed toolkit for visualization
and analysis of parallel applications is twofold. One is to develop a practical toolkit to
provide performance tuning and analysis of parallel applications, a source where ap-
plication programmers and users may work on their MPI/OpenMP parallel program,
while the other is to handle the representation and performance visualization of exper-
imental results, supported with dynamic multigraphical visualization of application
execution information and graph representation, through a number of performance
monitoring templates and displays, as depicted in Fig. 3.

The proposed performance toolkit is composed of three main components. The
first one is Application Development Manager (ADM), a module where programmers
develop their parallel programs, and generate graph representations for performance
tuning issues. The second component is Application Visualization Manager (AVM),
not only providing the developers a dynamic multi-view graphical charts of applica-
tion execution information, but also comparative performance charts among version
during development stage of a parallel application [17, 18]. The third component is
the System Visualization Manager (SVM), responsible to bring dynamic and real-
time graphical view of system resources’ performance and information customized
and displayed through the Ganglia monitoring system [10].

Different from other existing monitoring tools, it is an environment where it is pos-
sible to provide performance data analysis and application investigation for parallel
programs under development. Additionally, it is designed to make the performance
analysis process qualitatively, supporting systems built with a small number of ma-
chines as well as one with a large number of computing nodes, noting that the amount
of performance information gathered between both systems are tremendously differ-
ent. During the process of investigation, it makes use of data obtained from successive
executions of sequential, MPI, OpenMP, or MPI/OpenMP applications in the perfor-
mance tuning, in order to observe the difference and variances in performance of this
selected application.

3.1 Application development manager

In order to generate parallel representation of parallel programs, this component is
implemented using the SUN Java Standard Edition (J2SE) [30]. J2SE is a rapid de-
velopment environment and toolset for Java-based applications. It provides compiler,
tools, and Application Programming Interfaces (APIs) for writing, deploying, and
running applets/applications in the Java programming language. Steps to obtain such
representation are shown in Fig. 4.

As a first step, the component reads as an input either a sequential or parallel ap-
plication. Then the program is parsed and the number of computing nodes for the
computation of this application program involved is acquired. Sequential and parallel
constructions as well as their types are identified and saved into a data file. Next is
to construct the DP*Graph representation chart based on execution of data obtained
from. the previous. step..Later, the visualization module generates a JPEG format pic-
ture for the chart using the Java 2 Platform API Packages. The output chart can be
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Fig. 3 The proposed toolkit

enlarged and viewed for more detail segments of computing node for a given exe-
cuted parallel program, and can be combined into the developer’s screen to display
the complete representation of the parallel program under development. Furthermore,

e executed parallel programs to display on webpage,
cation of their parallel program.
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Sequential, Pure MPI, Pure OpenMP, or
Hybrid MPI-OpenMP parallel Applications

Fig. 4 Steps to obtain representation of a given application

3.2 Application visualization manager

This component is created and implemented using Round Robin Database (RRD)
system [RRD, 04]. One of the main reasons to start working on this particular com-
ponent is that we need a module to visualize the performance data of an application
generated during its execution from the start until the end of the execution. Addition-
ally, we need an interface that can process “what-if”” analysis, that is, performance
tuning of a parallel application during its development phase.

Performance analysis is done by experiments with the program being analyzed
and studied to investigate its efficiency. Its output is in both graphical and tabular
form, showing both profiling and system data, and such analysis is done on a per-
process basis. Graphical interfaces help application developers and users in finding
and correcting performance anomalies, inefficiencies, and load imbalances in applica-
tion programs under development, due to high barrier wait or message passing times,
hot spots, poor use of memory hierarchy (mainly cache, local, and remote references).

The proposed component turns possible to visualize both processing and commu-
nication activities and to analyze the efficiency of each task in a parallel application.
This component enables programmers and developers to identify the area of code
being displayed.

3.3 System visualization manager
This component is a web interface to display detailed text and graphical resource
information, designed to provide performance data of available resources in cluster

eI ation.of resource h.as CPU, memory, network, I/O is displayed
ime. In addition, this component provides
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Node 0 Node 1 Node 2 Node 3

Node 2 Node 3 .

Fig. 5 Parallel version of matrix multiplication—as steps 2 and 3

a process monitoring window, in which we can monitor all ongoing processes in
the cluster platform. It can display and update sorted information about processes
of each computing node, such as process ID of each task (PID), the user name of
the task (User), the priority of the task (PRI), the nice value of the task, negative
nice values are higher priority (NI), the size of the task (SIZE), the total amount of
physical memory used by the task (RSS), and the amount of shared memory used by
the task (SHARE). Each process’s state is also shown in this same window, as: S for
sleeping, D for uninterruptible sleep, R for running, Z for zombies, or T for stopped
or traced. For the purpose of updating the information in real-time basis, we added a
button in the window that can retrieve the latest data and refresh the window.

4 Experiments

To illustrate the use of this toolkit, we present the experiment using MPI/OpenMP
parallel version of matrix multiplication program and OpenMP SPICE Circuit Simu-
lator Program in the next sections.

4.1 MPI+4-OpenMP standard matrix multiplication

Given matrices A and B, we compute C = A * B using a standard matrix multiplica-
tion method. Steps described below are depicted in Fig. 5.

The computation using four computing nodes was performed in the following
way:

1. Values of matrices A and B are initialized in node 0;

2. Corresponding portion of matrices A and B are mapped to corresponding com-
puting nodes, depend on number of cores and processors in each node, the work
is further distributed among threads within each node by OpenMP work sharing
directives;

3. As computing node O concludes its computation, this one fourth of result matrix
C._is.passed.to.computing node 1. As computing node 1 finishes its computation
of one fourth of result matrix C, together with previous one fourth, it will send
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Computing Nodes
Hosts Color : * Blue - Idle (0%~80%) * Red - Busy (80%~100%) * Creen - Power off (More
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computing nodes to run your program -
hpc0l hpc02 hpe03 hpc04 hpc08

Fig. 6 Computing nodes selection/utilization table

one half of result matrix C to computing node 2. The calculation stops when
computing node 3 finishes its calculation, and finally, it passes the result matrix C.

The process of selecting computing nodes is performed by looking at the com-
puting nodes table available, in its simplified view, as shown in Fig. 6. The square
boxes in red mean the CPU is busy, with utilization between 80—-100%, blue boxes
mean that the CPUs utilization is 0-80%, and finally, green boxes mean the comput-
ing node is off. This real-time colored interface in computing node table assists the
user with the computing node selection. The table in Fig. 7 shows all information of
all computing nodes available in our cluster platform, in the full view mode. Again,
the CPU utilization is indicated by its color. Still in this table, information including
computing node’s memory total size and percentage available, number of CPU in
each computing node, its speed and OS kernel version are also available.

The file manager window shows us available source and compiled files, perfor-
mance visualizations, and visualization comparisons already built during successive
executions of the developers’ parallel programs, as shown in Fig. 8. That is, the devel-
opers upload their programs or configurations via upload function, they can handle
their files between compile or delete them by checking the corresponding box and
clicking the respective command button.

A result of execution of either sequential or parallel application program is shown
in Fig. 9 and its corresponding graphical performance data charts in Fig. 10. The
developer can either delete or select many previous executions of an application pro-
gram to combine into one single visualization chart (see Fig. 11), as a matter of com-
parison. After selecting the combine button, the comparison charts are shown, as in
Fig. 12, and this will be stored in the comparison selection list. Moreover, this chart
can be used by the developer to perform as much “what-if” analysis he needs during
the development of his sequential or parallel code; in other words, code improvement
can be assured by comparing the recently tuned application to the previous versions
of the same application under investigation. Note that only those computing nodes
that are involved in the computation have their performance data chart displayed.
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Fig. 7 Real-time display of all computing nodes status information in our cluster environment
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Figure 13 shows the MPI parallel program timing graph representation generated
by our toolkit as an example of matrix multiplication. The chart shows 4 horizontal
bars/lines, where each one corresponds to the execution of one specific computing
node. The triangles in red correspond to the communication points in our MPI par-
allel program (send-receive), while the bars in blue correspond to the execution of
sequential codes. Observe that although there are present parallel computations in a
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Fig. 10 Performance data of computing nodes involved in the computation

computing node, the only longest computation is displayed as one single horizontal
blue bar, since these computations are performed inside the same computing node.

4.2 SPICE programs

SPICE is a general purpose circuit simulation program for DC, transient, linear AC,
pole-zero, sensitivity, and noise analyses developed by UC Berkeley [22, 27] and
written in C. Several commercial codes are based on SPICE. It is used to simulate
circuits for various applications from switching power supplies to SRAM cells and
sense amplifiers. By doing so, it required the simultaneous solution of a number of
equations that capture the behavior of electrical/electronic circuits. The number of
i i modern electronic circuit with transistor counts
s, and thus the simulation of circuits has
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Fig. 12 Performance comparison of 2 execution results, overlapped node by node, showing its CPU load
and memory usage

become complex and quite time consuming. Thus, the parallel SPICE program is
needed to achieve cost-effective performance. In this paper, we use our toolkit to
measure the performance of several versions of SPICE programs. They are sequential,
parallel versions using standard OpenMP worksharing directive, and versions using
Intel OpenMP taskg. We give a basic introduction of each version in the following
subsections.

4.2.1 Sequential version

The sequential version of the SPICE program is downloaded and compiled from the

original version.3.0 Berkele provides several types of circuit simulations (or
these simulations, the transient simulation
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Fig. 13 MPI parallel program representation

is the most frequently used simulation. The circuit netlist describing the connection
of the electronic devices in the circuit simulated is first parsed by SPICE and the
appropriate data structures are generated. Then the matrix representing the circuit is
created and the data structures related to the matrix are set up. Actual transient analy-
sis occurs next. For each time point in the transient analysis, the model calculations
for each device, such as MOSFET, resistor, or capacitor device are performed. The
electrical parameters such as conductance and current for each instance instantiated
from the corresponding device model are computed and put into the matrix elements.
After the device model and instance calculations, all elements in the matrix for the
linear system in transient analysis are ready for the sparse matrix solver in SPICE.
Then the matrix calculations for the linear system, such as the LU decomposition
and forward/backward elimination in each iteration, are carried out until the conver-
gence is obtained. This process will continue until the final transient time is reached.
Finally, the simulation results for all the time points simulated are displayed on the
screen or stored in an output file.

4.2.2 SPICE using standard OpenMP

The parallel SPICE program using the standard OpenMP program is exclusively done
on.parallelizing the. model and.the instance calculation part. We refer to it as the de-
vice loading routine, because all the model parameters related to the device, and
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int MOS3load(inModel, ckt)
GENmodel *inModel;
register CKTcircuit *ckt;

register MOS3model *model = (MOS3model *) inModel;
register MOS3instance *here;

MOS3instance **MOS3instanceArray;
MOS3instanceCount = model ->MOS3instanceCount;
MOS3instanceArray = model->MOS3instanceArray;

#pragma omp parallel default (none) shared(ckt,
CONSTKoverQ,MOS3instanceCount,MOS3instanceArray)

#pragma omp for private(vt,Check, SenCond,Effectivelength,DrainSatCur,
SourceSatCur, GateSourceOverlapCap, GateDrainOverlapCap, \
GateBulkOverlapCap,Beta, OxideCap,vgs,vds,vbs, vbd,vgb, vgd,xfact, \
vgdo, delvbs, delvbd, delvgs, delvds, delvgd, cbhat, cdhat, tempv, cdrain, \

capgs, capgd, capgb, von, evbs, evbd, vdsat, cdreq, xrev,xnrm, cegbd,cegbs,ceqgb, \

ceq,geq,vgsl,vgdl,vgbl,arg, sarg, sargsw, error, gcgs, ceqgs, gcgd, ceqgd, gcgb, mod
el,here)

for{ i = 0; 1 < MOS3instanceCount; i++) {

here = MOS3instanceiArray([i]:

model = here->MOS3modPtr;

#pragma omp critical {lockAa)

{ // Right hand side of ax = b

* (ckt->CKTrhs + here->MOS3gNode) -= (model->MOS3type * (ceqgs + ceqgb +
ceqgd) ) ;

// Sum of contributions for the element of matrix A
* (here->M0OS3DAPtr) += (here->MOS3drainConductance);
* (here->MOS3GgPtr) += ((gcgd+gcgs+gegb));

} /* end critical */

} /* end of for loop */

return (OK) ;

} /* end of MOS3load({) */

Fig. 14 MOS3load function which is part of SPICE3 OpenMP source code

the parameters for the instantiations of the device are computed and loaded into the
corresponding matrix elements. There are many devices, such as MOSFET, resistor,
capacitor, diode, and bipolar transistor, supported by SPICE. For each device, SPICE
provides at least one model for the instances corresponding to this device used in
the circuit simulated. For example, MOS3 is one of the models for the instances of
MOSFET device. The parameters such as the conductance and current are calculated
according to the model equations built into the device loading routines. The conduc-
tance calculated will contribute to the elements of the matrix used in the linear system
for simulation, while the calculated current will be entered into the right-hand side of
the linear system.

The_input_data_we use is. SRAM circuit with different size of memories. The
SRAM circuit consists of many instances of the MOSFET device with MOS3
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model. Therefore, the time-consuming part of the original sequential routine was
the MOS3load function, which is the device-loading routine in SPICE. It contains a
nested pointer loop traversing an orthogonal linked-list. The actual size of the source
code of the loop is approximately 1.3 K LOC Line of Code (LOC) and Fig. 14 re-
produces the compact example code of MOS3load function. The size of iteration is
dependent on the size of the circuit, the number of devices such as transistor, capaci-
tor, etc. simulated may vary widely.

There are a few steps to parallelize the sequential nested loop that is shown in
Fig. 14. First, at the level of the circuit matrix setup, we introduce a data structure
to store the address of each linked-list element of an instance in an array of pointers,
MOS3instanceArrayli], as well as to keep track of the total number of elements in
the lists in a variable model->MOS3instanceCount. Second, we perform loop coa-
lescing to reduce the number and nesting level of loops, as well as to generate loops
with a larger loop iteration count. This loop now involves an array of pointers and
integer index instead of pointers. Finally, we may now directly add a parallel omp for
directive to the loop since the loop iterations are independent except for first, shared
pointers that point to the variables that are used to update the right-hand side of the
linear system, Ax = b, and second, shared pointers that point to the elements of ma-
trix A, which is used to sum the contributions for those elements. The omp critical
synchronization directive is used to resolve this conflict.

Another version is the model device-loading Capacitor load (CAPload) function
parallelized using OpenMP is shown in Fig. 15. Other model device-loading func-
tions such as diode load (DIOload), voltage-source load (VSRCload), and many more
have a very similar program structure as MOS3load, so they are parallelized in the
same way. There is a parallel region within the MOS3load routine, which involves a
considerable amount of fork-join overheads in addition to the cost of the synchroniza-
tion overheads. This routine may be called so many times that the number of barrier
and critical sections can be large and unavoidable.

4.2.3 SPICE using Intel taskq

In this section, we introduce the version of SPICE implementation using Intel omp
taskq. This implementation has been parallelized to perform device instances calcula-
tion per thread without modification to the original program. In order to parallelize it
without any modification, we have to parallelize at a coarser grain, that is, at the level
of device instances of a model (each model consists of many device instances) per
task. With this level of granularity (model per thread), the load imbalance problem
can occur, since each model may consists of different number of device instances, but
then the OpenMP directives can be inserted directly to original program.

Another version that parallelizes CAPload() function using Intel OpenMP task
queue is shown in Fig. 17. Both versions of the source code shown in Figs. 16 and 17
have been successfully compiled by an Intel OpenMP compiler on Linux cluster of
2-CPUs machines.

4.2.4 Performance measurement results

We.use.our.toolkit to.measure.several.version of the SPICE3 in its OpenMP imple-
mentations. The SRAM circuit consists of many instances of the MOSFET device
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/* Count the number of instances */

for (model_temp = model; model_temp != NULL; model_temp = model_temp-
>CAPnextModel )

for (here_temp = model_temp->CAPinstances; here_temp != NULL ;
here_temp=here_temp->CAPnextInstance)

instanceCount++;

/* allocate the memory */
CAPinstanceArray = (CAPinstance *#*) calloc (instanceCount,

sizeof (CAPinstance *)):

#pragma omp parallel shared(inModel,ckt)
#pragma intel omp taskqg private (model,here,vcap, geq,ceq,condl,error)
for (model=inModel ; model !'= NULL; model = model->CAPnextModel )
#pragma intel omp task
{ /* loop through all the instances of the model */
for (here = model->CAPinstances; here != NULL ; here=here-
>CAPnextInstance) {
for (iparmno=1;iparmno<=info->SENparms;iparmno++) {
Osxp = tag0 * * (ckt->CKTstatel + here->CAPsensxp
+ 2*(iparmno - 1))
+ tagl * *{(ckt->CKTstatel + here->CAPsensxp
+ 2* (iparmno - 1) + 1);
if (iparmno == here->CAPsenParmNo)
Osxp = Osxp - tag0 * vcap;
* (info->SEN_RHS [here->CAPposNode] + iparmno) += OsXp;
* (info->SEN_RHS [here->CAPnegNode] + iparmno) -= Osxp;
Yy}
return{(OK); }

Fig. 15 OpenMP implementation of CAP3load in SPICE

with a MOS3 model. Therefore, the time-consuming part of the original sequential
routine was the MOS3load function, which is the device-loading routine in SPICE3.
The actual size of the source code of the loop is approximately 1.3 K Line of Code
(LOC). The size of iteration is dependent on the size of the circuit, the number of
devices such as transistor, capacitor, etc., and simulated may vary widely.

We ran the experiment using our tool, based on different versions of SPICE3 cir-
cuit simulator programs simultaneously instead of running sequentially one by one
on cluster of 2 CPUs inside computing nodes. The results of execution of all nodes
are collected, computed, and plotted. Each version of the programs label “Source,”
“Capload,” “MOS3load,” “Capload+MOS3load,” and three versions labeled with
the beginning word “Taskq.” They correspond to an original sequential program of
SPICE3, parallelized Capload() function alone, parallelized MOS3load() function
alone, parallelized both Capload() and MOS3load() functions using omp parallel
for and synchronization directives, three versions each parallelized using omp task
queue, respectively. Each version takes input of simulation data of 1, 4, 8, and 16 K
SRAM based on Meta Oxide Semiconductor (MOS) 3 level model simulation run-
ning on (eachnode).a DELL PowerEdge SC1420 Intel Xeon Processor 3 GHz Em64T
800 MHz FSB*2 and 1 GB DDR400 memory. Our preliminary experimental results
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#pragma omp parallel default (none) shared(ckt,
CONSTKoverQ, inModel)
#pragma intel omp taskqg private({wvt,Check,
SenCond, EffectiveLength, \
DrainSatCur, SourceSatCur, ........... ;model , here)
for (model=inModel; model!=NULL;model=model->MOS3nextModel) {
#pragma intel omp task
for (here=model ->MOS3instances; here!=NULL; herezhere-
>MOS3next Instance) {
#pragma omp critical (locka)
{ // Right hand side of Ax = b
/7 Sum of contributions for the element of
matrix A
} /* end critical */
in

return(0OK) ;

Fig. 16 Parallelized loop of MOS3load() function using Intel omp taskq

#pragma omp parallel shared(inModel, ckt)
#pragma intel omp taskq private (model, here,vcap, geq, ceq, condl, error)
for (model=inModel ; model != NULL; model = model->CAPnextModel
#pragma intel omp task
{ /* loop through all the instances of the model */
for (here = model->CAPinstances; here != NULL ; here=here->CAPnextInstance) {
vcap = *(ckt->CKTrhsOld+here->CAPposNode)
- *(ckt->CKTrhsOld+here->CAPnegNode) ;
for (iparmno=1;iparmno<=info->SENparms; iparmno++) {
Osxp = tag0 * *(ckt->CKTstatel + here->CAPsensxp + 2* (iparmno - 1)
+ tagl * *(ckt->CKTstatel + here->CAPsensxp + 2*(iparmno - 1) + 1);

if (iparmno == here->CAPsenParmNo)
Osxp = Osxp - tag0 * vcap;
* (info->SEN_RHS [here->CAPposNode] + iparmno) += Osxp;
* (info->SEN_RHS [here->CAPnegNode] + iparmno) -= Osxp;
}

return (OK)

)

Fig. 17 Parallelized loop of CAPload() function using Intel omp taskq

using the toolkit in Fig. 18a, b shows the L2 cache read miss and the performance
speed up, respectively.

5 Conclusions and future work

To achieve high performance on next generation many-core multiprocessor cluster
computing systems, applications developers still face a large number of application
performance problems, e.g., load imbalance. These problems make application tuning
complex and most of time counter-intuitive. Additionally, similar problems are tough
to be detected without the help of performance tools that is able to correlate dynamic
performance data sourced from both software and hardware.

We have shown.in.this paper.the viability of implementing a toolkit that brings to
application developers representation of his parallel program, easing the hand-made
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load balancing issues. In addition, the developer can perform “what-if” analysis on
his parallel program by tuning his parallel application to achieve higher performance.
This toolkit brings to developers performance data executions of this parallel program
under development, by displaying in real-time basis data available of each one com-
puting node, to provide easier execution process of the developers parallel program.
Moreover, it provides a friendly interface to developers.

The implementation includes the performance measurement and analysis of hy-
brid models of MPI/OpenMP in cluster environments. MPI/OpenMP matrix multi-
plication application examples have been represented by a program timing graph,
which may be used for analysis such as load imbalance and communication over-
heads among nodes. Even though the representation chart in the timing graph only
displayed the longest computation among threads within a node, the execution time
of each thread can be easily obtained by selecting the bar chart, so that the load imbal-
ance information within a node can be analyzed to locate the region of code where it

pent much time waiting while others are doing useful computations. We also present
ormance evaluation purpose, showing that
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cache behavior for a selected area of code can be obtained from sequential or parallel
programs. This information is crucial not only because to its cost-effectiveness in de-
veloping parallel applications using MPI/OpenMP, but also to benefit the application
developers for performance tuning of their applications.

Overall, not only can application developers and programmers benefit in pursuing
a toolkit for performance analysis and tuning their applications, but also its prac-
ticality and high aggregated value in using it in research centers, universities that
offer courses and training in parallel programming, and other application domains as
well.

5.1 Future researches

The proposed research is still in early stages of development and ongoing work, being
full-featured to execute sequential and parallel applications. We expect significant
improvements for the future process of its development and implementation.

Several directions important to the development of the toolkit can be listed as:

— Computing node selection: possibility to select a range of most suitable computing
nodes for a given computation, as discussed in [32]. To create automatic comput-
ing node selection function, requesting that web-based toolkit select most suitable
computing nodes for a given computation by considering network and CPU com-
puting power factors. Selecting computing nodes for a given computation in het-
erogeneous environments is not an easy task, with the goal in mind of solving an
application in shortest execution time.

— MPI communication primitives: many collective all-to-all constructions have not
yet been included in the proposed toolkit yet, the need to also include such symbol
in the representation chart when parsed.

— Scheduling policy: to distribute computations among computing nodes in a com-
puting platform efficiently, i.e., to detect the presence of SMPs or multi-core CPUs
in computer nodes of a cluster platform. One efficient scheduling method that
may be considered is parallel loop self-scheduling for cluster and grid environ-
ments [33], or general task scheduling for distributed systems [3, 7, 9, 16].

— Parallelization: to semi-automatically transform existing MPI, OpenMP, or hybrid
MPI/OpenMP applications into multithreaded applications, in order to explore
higher degree of parallelism and explore many-core SMP multiprocessor cluster
systems.
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